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ABSTRACT

Recent advancements in Low Earth Orbit (LEO) satellites are facil-
itating the provision of Deep Neural Networks (DNNs)-inherent
services to achieve ubiquitous coverage via satellite computing.
However, the computational demands and energy consumption of
DNN models pose significant challenges for satellite computing
with limited power and computation resources. Based on the hierar-
chical characteristics of DNN models, we propose a satellite-ground
co-inference strategy that executing certain layers on satellites and
the remaining layers on ground servers. However, identifying the
optimal layers for in-orbit processing with latency constraints is
challenging due to the uncertain energy consumption across diverse
models. To explore the correlation between energy consumption
and layer types, we conduct comprehensive measurements on a
hardware device commonly found in commercial LEO satellites and
develop a layer-based energy consumption prediction model. Then,

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Internetware 2024, July 24-26, 2024, Macau, China

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0705-6/24/07

https://doi.org/10.1145/3671016.3674811

Ao Zhou'
aozhou@bupt.edu.cn
State Key Laboratory of Networking
and Switching Technology, Beijing
University of Posts and
Telecommunications
Beijing, China

Shangguang Wang
sgwang@bupt.edu.cn
State Key Laboratory of Networking
and Switching Technology, Beijing
University of Posts and
Telecommunications
Beijing, China

we formulate an optimization problem of minimizing the energy
consumption on the satellite within the latency constraint as an
integer nonlinear programming problem. Solving this problem is
difficult due to combinatorial explosion in the discrete solution
space. To address this, we propose an improved algorithm based
on genetic algorithms. Using configurations from a real satellite,
we conduct simulation experiments, concluding that our algorithm
significantly improves energy savings by an average of 27x.
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1 INTRODUCTION

With the growing demand for space exploration and technological
advancements, Low Earth orbit (LEO) satellites, as demonstrated by
prominent constellations Telesat, OneWeb, and SpaceX, are rapidly
evolving [6]. Due to their capacity for comprehensive coverage,
LEO satellites present a new opportunity for numerous services
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inherent to Deep Neural Networks (DNNs), such as Earth observa-
tion involving the capture of ground imagery and the utilization
of DNN models to analyze occurrences (e.g., remote monitoring,
weather forecasting and emergency response). However, the con-
strained energy and computational resources of satellites, coupled
with limitations in downlink transmission, pose urgent challenges
in delivering these services under latency constraints [20].

There are currently two primary approaches to address this issue.
The predominant approach involves satellites capturing ground
imagery and transmitting all images back to Earth for process-
ing, employing a conventional technique known as the “bent-pipe”
architecture [10]. Despite its potential, satellite-ground communi-
cation has limited capacity and often experiences unreliable, in-
termittent disruptions. These interruptions frequently result in a
significant backlog of data awaiting transmission. Alternatively,
the latest research is focused on exploring the computational po-
tential of satellites, and the concept of satellite computing has been
proposed and applied [9, 17]. A novel approach proposes executing
DNN models directly on the satellite for satellite computing [7].
However, due to the current capability of LEO satellites and energy
sources from solar power generation, executing large-scale models
(i.e., those composed of multiple layers) in orbit has become exceed-
ingly challenging for satellite computing [31]. While small-scale
DNN models are being considered, they may not ensure the same
level of satellite computing accuracy [15].

To address the challenge, given that energy consumption and
latency are influenced by layers, we break down the structure of
the DNN model into individual layers, treating each layer as a dis-
tinct and independent subtask. The input for each layer derives
from the output of the preceding layer. A promising strategy entails
executing select layers on satellites, transmitting intermediate re-
sults to ground stations, and subsequently executing the remaining
layers on the ground. As the output matrices of layers in models
typically decrease compared to the initial inputs, this approach
efficiently utilizes the limited resources of LEO satellites, resulting
in a significant reduction in transmitted data size.

However, since the energy consumption of different models
is unknown and variable, accurately executing which layers on
satellites poses a challenge. Exploring the correlation between en-
ergy consumption and layer types necessitates obtaining energy
consumption data for various layers. Yet measuring the energy
consumption for each layer across diverse models is costly due to
model complexity or even infeasible due to high inference time
overhead, particularly with time-consuming layers. To tackle this
challenge, we devise and implement a comprehensive measurement
framework on a hardware device to assess energy consumption
across different layer configurations. We summarize our findings
and identify the critical yet unexplored issue of the nonlinear cor-
relation between energy and essential layers. Drawing from these
insights, we propose a generalized layer-based energy consump-
tion prediction model corresponding to specific layers and models.
This predictor accurately estimates energy consumption for DNN
models at the layer level.

The constrained energy and computation capabilities of LEO
satellites, along with transmission capacity, collectively impact in-
orbit execution latency and energy consumption. This presents a
complex challenge for co-inference between satellites and ground
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stations. To facilitate energy-efficient satellite computing, we for-
mulate a problem aiming at minimizing energy consumption with
latency constraints on the satellite. Additionally, we propose an
enhanced algorithm to effectively address this problem. In order
to make the simulation results more realistic, we use real-world
configurations from the in-orbit satellite to conduct the simula-
tions. Results demonstrate that the proposed algorithm can support
energy-efficient satellite computing.
The main contributions of this paper are as follows.

e We conduct a preliminary measurement for energy con-
sumption on diverse layers and models. Then summarize the
insightful observations and propose a general layer-based
energy consumption prediction model corresponding to spe-
cific kernels and models.

e We formulate a DNN layer-wise processing schedule opti-
mization problem for satellite-ground co-inference via the
proposed prediction model. Then we propose an improved
genetic algorithm-based method to solve the problem.

e We use configurations from a real satellite to simulate the ex-
periments. The results indicate that our algorithm effectively
saves energy 27X on average under various conditions.

2 RELATED WORK

Satellite computing. With the rapid advancement of satellite tech-
nology, current satellites can be equipped with computing payloads
to facilitate computational processing capabilities. Recently, in-orbit
computing has attracted significant attention within the satellite
community. For example, OEC [9] and Kodan [7] aim to enhance
downlink connections’ efficiency, particularly in scenarios where
satellites are saturated, by performing partial processing and data
filtering on satellites through early rejection of non-valuable im-
agery. Additionally, Zhang et al. [39] introduced a satellite-ground
cooperative system, employing shallow models for processing satel-
lite remote sensing data and deep DNN models on the ground for
more precise computations. However, both these works overlook
the restricted energy consumption onboard, leading to computa-
tional bottlenecks for DNN model-based applications.

Shortage of energy on satellites. Most LEO satellites en-
counter computational bottlenecks due to their small size and re-
liance on solar energy collection. Some work has explored satellite
energy consumption. Xing et al. [31] observed the insufficient en-
ergy on the shaded side as a primary constraint for satellite com-
puting advancement. Yang et al. [33] investigated the correlation
between the number of charge-discharge cycles and the discharge
depth of satellite solar panels with battery lifespan, suggesting that
controlling these cycles could extend battery life. Thus, developing
a strategic decision-making system to maximize energy efficiency
in orbit while limiting charge-discharge depth holds significant
importance. Therefore, our proposal focuses on energy-aware in-
orbit inference while considering the general model structure of
employed DNN models.

Layered DNNs computation. DNN models typically consist
of various layers, each requiring specific computing resources and
consuming energy accordingly [37, 38]. This insight allows large-
scale DNN tasks to be fragmented into layer-specific subtasks [5],
as demonstrated by numerous successful experiments.
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Figure 1: The variation in energy consumption and data size
across each layer of AlexNet.

Table 1: Configurations for each layer type.

Layer type Configuration
convtrelu (HW, K, S, Cin, Cout)
pool (HW, K, S, Cin)

fc (HW, K, S, cin, Cout)

Hu et al. [12] introduced DNN surgery for concurrent process-
ing of segmentation DNNs at edge and cloud nodes. Jeong et al.
[13] proposed a partition-based loading technique for DNN com-
putations. Currently, DNN partitioning for edge computing is not
directly applicable to satellite systems due to the short communica-
tion windows between satellites and ground stations. In contrast,
our study extensively examines real-world energy consumption of
individual layers using a generic model, enabling precise energy
profiling of layers and resource-efficient inference tasks in satellite
orbits.

3 MEASUREMENT AND ANALYSIS

We present a reproducible methodology for energy measurement,
facilitating in-depth analysis of layer energy consumption. Building
on the insights gained from these measurements, our objective is
to develop a layer-based energy consumption prediction suitable
for general DNN models deployed on satellites.

In this paper, our focus is on layer configuration, as a complete
DNN model comprises layer-level units with diverse layer types.
The different types and parameters of each layer contribute sig-
nificantly to layer variations in energy consumption during DNN
model execution. To delve deeper into the impact of different con-
figurations of layers, we break down the DNN models. Figure 1
illustrates the energy consumption and data size of each layer in
AlexNet, revealing a notable discrepancy across the various layers.
Therefore, analyzing the energy usage across various layer config-
urations is fundamental to establishing a thorough comprehension
of energy consumption during DNN model executions.

3.1 Measurement Settings

Device and tools. Commercial Off-The-Shelf (COTS) device is
commonly found in commercial LEO satellites, improving comput-
ing ability and accelerating the development of satellite comput-
ing [2]. As illustrated in Figure 2, we built a hardware platform
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Figure 2: The workflow of measurement.

on a COTS device with the same configuration as a real satellite
“BUPT-1". Given the impracticality of monitoring the energy con-
sumption of individual layers in orbit, we conduct a comparison
of the power consumption while executing DNN models on both
ground hardware platform and “BUPT-1" satellite. The existing
research confirms that the energy consumption is nearly identical
between ground-based and satellite operations. There exists only a
minimal difference in the performance of the same tasks whether
during daylight or eclipse [31]. Therefore, employing ground-based
devices to simulate computing devices on satellites for acquiring
energy consumption data is reasonable. Additionally, all power con-
sumption data is obtained using the ATORCH power monitor, and
inference time is measured using a time script built by the PyTorch
inference library [21].

Dataset. We utilize the xView! dataset in the context of satellite
remote sensing for satellite computing. xView is one of the largest
publicly available datasets of satellite imagery. This dataset com-
prises images of diverse global scenes, annotated with bounding
boxes.

Models. Our measurement involved the utilization of layer-type
parameter configurations drawn from numerous renowned models,
including AlexNet [14], GoogLeNet [28], VGG [27], and MobileNet
[11] and so on, enabling us to assess thousands of diverse parameter
configurations across various layer types.

Rules for measurement. This paper focuses on three types of
layers: convolution (conv+relu?), pooling (pool), and fully-connected
(fc) layers, as they are the primary contributors to the energy con-
sumption of DNN operations [26, 30]. Table 1 shows their respective
configurations. For parameter selection, we referred to the parame-
ter ranges commonly used in DNN models (such as the layer size in
convolution layers typically being {1, 3, 5, 7, 9, 11}) and constructed
single-layer models with conv+relu, pool, and fc layers.

Workflow. Figure 2 illustrates the overall workflow of our mea-
surement. For each DNN model, we initially break down this model
into several layers, and employ a model consistency checker to vali-
date the logic of model partitions [36]. Next, we push the layer and
the library to the satellite, and automatically extract and save the
parameters of each layer. Following, we execute the layers, during
which the satellite loads the library and layers into memory for

!http://xviewdataset.org/
%In this paper, + represents kernel fusion.
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Figure 4: Comparison of prediction results and the ground-truth.

warm-up and performs inference N times (typically 200 by default)
[34, 38]. Simultaneously, we employ a timing script to measure
the average inference time of each layer and a power monitor to
record the average power consumption of each layer. Multiplying
the two values yields the energy consumption of executing each
layer. Finally, we store the energy consumption along with the
corresponding parameters to the dataset.

3.2 Results and Implications

To study the impact of 5 configurations (K, S, HW, Cin, Cou:) on the
energy consumption of the conv+relu layer, we test different con-
figurations with varying energy levels. In Figure 3, each evaluation
changes one configuration while keeping the other four constant.

The trends show that all 5 parameters impact energy consump-
tion either positively or negatively, but each has a non-linear cor-
relation. We observe a disproportionate influence of these config-
urations on energy consumption. For instance, HW has the most
significant effect on the energy consumption of the conv+relu layer.
As shown in Figure 3, when the other parameters are held constant
and HW (from 112 to 224), K (from 3 to 5), Cj,, (from 64 to 128), Coyr
(from 32 to 64), and S (from 4 to 2) each double, the correspond-
ing changes in energy consumption are 4.7x (from 15.764m] to
74.154m]J), 1.3X (from 16.037m]J to 21.544my]), 1.4X (from 508.609m]
to 735.523m]J), 1.5X (from 350.038m]J to 539.060mJ), and 2.17X (from
55.239m]J to 25.394mJ). Furthermore, the variation in S is negatively
correlated with energy consumption, while the other four parame-
ters (HW, K, Cin, Cour) are positively correlated, consistent with
their correlation with computational load.

Insights: The aforementioned observation indicates that the con-
figuration of 5 parameters (HW, K, S, Cin, Cout) has a significant
impact on the energy consumption of conv+relu layer. Hence, the
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measurement motivates us to investigate the patterns between energy
consumption and layer configuration.

3.3 Layer-based Energy Consumption
Prediction

To explore the energy consumption patterns specific to each layer
type, the energy consumption of different layers should be obtained.
Yet measuring the energy consumption for each layer from different
models is costly due to the complexity of models, or even infeasible
due to the high inference time overhead [8]. Therefore, the establish-
ment of a universal model for predicting DNN layer-based energy
consumption is necessary. To deal with this challenge, we propose a
regression prediction algorithm based on Particle Swarm Optimiza-
tion for the BP neural network (PSO-BPR), thereby establishing the
correlation between parameters and energy consumption. More-
over, our objective in designing the prediction model is to ensure
both prediction accuracy and avoidance of overfitting. So we parti-
tion the entire dataset into training and testing sets in a 7:3 ratio
and subsequently train the prediction model on the training set.

Algorithm 1 details the DNN layer-based energy prediction algo-
rithm based PSO-BPR. Firstly, the network, along with the positions
and velocities of each particle in the particle swarm, are initialized
(lines 1-7). Subsequently, in a loop, the positions and velocities
of the particle swarm are iteratively updated to progressively ap-
proach the optimal solution (lines 14-31). Within each iteration,
the Fitness function is employed to determine the current optimal
position and evaluating the results using the RMSE error predicted
by the constructed BP network (lines 8-13).

We achieve approximate prediction results, as illustrated in Fig-
ure 4, where the blue signifies predictions and the red signifies the
ground-truth. To quantify the prediction accuracy, we calculate
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Algorithm 1: DNN Layer-Based Energy Prediction
Input: Layer-based energy consumption dataset: train_p,
train_t. The number of parameter types: inputnum.
Particle swarm size: N.
Output: A precise layer-based energy prediction network.
Initialize a random population of individuals {x;},
i€[1,N];
Initialize each individual’s n-element velocity vector v;,
i€[1,N];
Initialize the best-so-far position of each individual:
b; « argminy{Fitness(x;)},i € [1,N];
Initialize the BP net;
Define the neighborhood size o < N
Define the influence values w1, w2;

[

N

©w

'S

w

o

=

Define the max and min velocity vmax, Umin;
Function Fitness({x;}, net):

9 net.(wy, wo, By, Bp) « (xi[1:nl1],x;[n1+1:
n2],xij[n2+1:n3],x;[n3+1: n4]);

®

10 net.train();
11 error = sum(RMSE(net(train_t)));
12 return error;

13 while not (termination criterion) do

14 foreach individual x; do
15 H; < o nearest neighbors of x;;
16 h; « argminy{Fitness(x) : x € H;};
17 vi<—0,~+(u1~(b,~—x,~)+a)2~(hi—xi);
18 if |0j| > Umax then
19 ‘ v — Z)i‘|7-’mazx;
i
20 end
21 if |v;| < omin then
22 ‘ v; — %’
L
23 end
2 Xj = Xj +0j;
25 b; « argmin{Fitness(x;), Fitness(b;)};
26 end

27 net.(wy, wo, By, B2) « (xj[1:nl1],x;[n1+1:
n2],xj[n2+1:n3],x;[n3+1: n4));
28 net.train();

29 end

the accuracy percentages. For the conv+relu layers, the accuracy
within +10% is 54.1%, and within +15% is 62.3%. For the pooling
layers, the accuracy within +10% is 48.8%, and within +15% is 52.2%.
For the fc layers, the accuracy within +10% is 56.6%, and within
+15% is 64.4%. These results demonstrate the highest level of ac-
curacy in energy consumption prediction compared to existing
prediction models [26, 30].

4 SYSTEM MODEL

In this section, we initially present the comprehensive satellite-
ground co-inference model. Subsequently, we introduce the energy

307

& M\ (7 ) N ]
¢ B p " 9 -
TS DN model H| w0 i | mmes L Satellite
- 5 J A \H/ \“/ B
Energy prediction | - —~— -
model (0 () G (9

n T -
= L\ VIX/‘ J/ ;
‘ 1 / - Ground

Emergency 4= Forest fire E

H LEO v Ground
= EE

W Satellites A Station

Figure 5: Satellite-ground co-inference system model.

Cloud Data - Data Control
Center Stream Stream

system aboard the satellite. Finally, we formulate the layer-wise
computing and transmission model.

4.1 Satellite-Ground Co-Inference Architecture

Our model necessitates partitioning a DNN model into two seg-
ments so that one is processed at the satellite and the other on the
ground, as illustrated in Figure 5. The satellite segment comprises
LEO satellites equipped with diverse payloads. The cameras capture
observations of the Earth, then the computing module executes
part of the DNN layers to process the captured images. Finally, the
transmission module transmits the intermediate data results to the
ground. The ground segment consists of ground stations and cloud
data centers. The ground stations relay the intermediate data to
cloud computing centers for final computations.

To facilitate expression, we model a DNN as a Directed Acyclic
Graph (DAG), where each vertex corresponds to a layer, and the
links between vertices denote layer dependencies [18]. Let I' =
(V, &) donate the DAG of a DNN model, where V = {v1, 02, ..., 05}
is the set of vertices representing the layers of the DNN. The set
& represents the edges. An edge (v;,vj) € & signifies that v;
must be processed before v;, and v; provides output data to v;
as input data. Figure 7 illustrates the DAG of the inception v1 of
GoogLeNet as depicted in Figure 6. In Figure 7, V = {0v1,02, .., 09}
represents the fc, conv+bn+relu, and pooling layers, while & =
{(v1,02), (v1,03), ..., (v8,09) } depicts dependencies.

4.2 LEO Satellite Energy Model

The satellite energy model consist of three components: energy har-
vesting, energy storage, and energy consumption [4, 19], illustrated
in Figure 9.

Energy harvesting. Satellites derive their energy from solar
panels capturing solar radiation. Statistics indicate that 85% of the
energy consumption by LEO satellites is directly sourced from solar
cell arrays [24]. Additionally, the power generated by solar cells
correlates directly with the cosine of the solar incidence angle 0 (the
angle between light and the normal to the panel) [29]. Therefore,
the energy acquired by the solar cell array can be expressed as:

Psolar = Psun - cos 0 (1
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where Py, is the direct solar power. And the energy obtained by
the solar cell array is:

@

Energy storage. The function of the energy storage system is to
accumulate energy during daylight periods and discharge it during
eclipse periods. This system comprises three regulators and battery
sets. The shunt regulator serves to regulate the current, diverting a
portion of the energy acquired from the solar panels directly to the
payloads, denoted as Eg,‘jfb“r R
battery set for storage. Consequently, the energy capacity that the
battery set can store is determined by:

Esolar solar * T

while the remainder is directed to the

_ Esolar

sup ®)

Attention must also be given to the lifespan of energy storage
systems. Prolonging the lifespan of these systems necessitates re-
stricting the depth of discharge [16]. For instance, nickel-cadmium
batteries used in LEO satellites maintain a discharge depth within
10% to 20%, while nickel-hydrogen batteries typically range from
30% to 40% [1]. Consequently, the available energy of the battery
system must satisfy the condition: E?% < y - B
resents the depth of discharge, and E;** denotes the maximum
battery energy capacity.

Energy consumption. Each component of the energy consump-
tion system requires electrical energy, encompassing tasks such
as attitude control, remote sensing, computing, and transmission
[3, 23]. Certain modules are dedicated to maintaining the satellite’s
essential functions and are accorded higher priority for energy al-
location. This segment of power is denoted as Psys, with energy
consumption defined by Esys = Psys-t. Other modules serve specific
functions, in our satellite-ground co-inference task, these include
computing and transmission modules, with energy consumption
denoted as E;4gr. When energy onboard the satellite is insufficient,
priority is given to the higher-priority components, necessitating
the shutdown of task payloads. Therefore, the available energy for
task modules is determined by E; sk = Esup — Esys, where Egyp

represents the energy supplied by the satellite, sourced from both
Ebat  psolar

sup sup >
denote the energy provided by the solar cell

Epar = Esolar

where y rep-

the solar cell array and the battery. Hence, Esyp =
where Eg%‘” and Efgf,
array and the battery.

4.3 Layer-wise Computing and Transmission
Model

We propose a layer-wise satellite-ground co-inference framework.
Due to constraints on computing resources and energy on satellites,
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executing a complete DNN model independently is an unachievable
task for LEO satellites. Furthermore, based on research of existing
DNN models, running certain layers in most DNN models often
leads to changes in the data volume of intermediate results com-
pared to the original input data [32]. Based on the layer-wised
framework, we introduce the computing and transmission models
following.

Computing model. We can predict the energy consumption
Eg:,, required for computing each layer, as presented in Section 3.
We utilize a binary variable h,, to indicate where v; is computed.
hy; = 1represents that v; is computed on the satellite, and hy, = 0
represents that v; is computed on the ground. Therefore, the total
computing energy consumption on the satellite can be expressed
as follows:

I
Ecom = ) ho; - Egom @
i=1
The satellite computing task can be completed when the energy
Egyp provided by the satellite is at least equal to the sum of the com-
putational energy Ecom and Esys. Therefore, the latency required
for computation on the satellite can be expressed as follows:

tsatellite - ES”P — Ecom

com

®)

PS ys

After computation on the satellite, the intermediate results need
to be transmitted to the ground. Let Dy, = ay, Dy represent the size
of output data for each layer, where a,, is the ratio of the output
matrix for layer v; to the initial matrix Dy. Therefore, the size of the
intermediate results transmitted from the satellite to the ground,
denoted as D, can be expressed as follows:

1 1
D= Z Z (Cv,«vj < (hy; = hUj) - Dy;)

i=1 j=i+1

(6)

Thus, the computing latency in the ground is tfﬁﬁf"d = D- f, where

B represents the constant latency for processing 1MB of data in the
ground cloud data center.

Transmission model. We establish a model to determine the
maximum achievable bit rate based on the received signal power in
the satellite downlink channel [9, 22]. The received signal power
can be expressed as follows:

A 2
yprd) @)
where Ptrqns represents transmit power, L; represents the line loss
factor at the transmitter, G; represents the transmitter gain parallel
to the separation vector, G, represents the receiver gain parallel to

C= PtransLthGr(
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the separation vector, A is the center frequency of the channel, and
S is the magnitude of the separation vector. The maximum bit rate
can be expressed as follows:

max
Rtrans

= Blog,(1+ 1) ®)
where B is the channel bandwidth, C is the received signal power
as defined above, and N is the received noise power. The received
noise power N = kMB, where k is the Boltzmann constant, and M
is the system noise temperature. The system noise temperature of
both satellite and ground is modeled as described in [35].

We can express the transmission energy consumption of DNN
on the satellite. When layer v needs to offload to the ground for
computing while its antecedent layer v; is computed on the satellite.
The output data of layer v; should be transmitted to the ground
station as intermediate results. As defined above, the transmission
energy cost for offloading D,, from the satellite can be expressed
as follows:

Evi D Vi

trans (9)

= Ptrans - tv,- = Ptrans
Rtrans
where Ryrqns is the real transmission data rate.

We consider all potential transmission scenarios across various
DNN architectures. As the constructed DAG of the DNN mentioned
above, the relationships between layers in the DNN can be depicted
using a binary variable set Co,0;- When Coo; = 1,1t signifies a
edge between v; and v}, and v; is the antecedent layer of v;. As
depicted in Figure 8, when computing v1, v3 on the satellite and the
remaining layers on the ground, hy, and hy, both equal 1, while hy,
for the other vertices equals 0. Therefore, if hy, — hy ;=1 it signifies
that the output of layer v; must be transmitted to the ground station
as an intermediate result. In this scenario, there are four pairs of
vertices with hy, —hy, = 1. However, since the preceding vertices of
3,04, U5 are all v1, only one transmission of the output data of v1 to
the ground station is necessary. Therefore, when multiple successor
vertices for the same vertices require offloading, it is necessary to
divide by the number of edges to avoid redundant computations.
Therefore, the transmission cost for completing a DNN task on the
satellite can be expressed as:

. Z§:i+1 (C”ivf < (hy; = h”j) 'E?;ans)
Etrans = Z i
31 (Copo, - (ho, — ho))

i=1

(10)

To ensure the intermediate results are successfully transmitted
to the ground for further computation, the transmitting latency
must meet two conditions. Firstly, the energy collected on the satel-
lite after completing the computation task must be sufficient to
cover the energy consumption required for transmission. The la-
tency satisfying this condition is denoted as ttlr ans- Secondly, the
intermediate data must be successfully transmitted to the ground
station. The latency satisfying this condition is denoted as ttzr ans
Therefore, the transmitting latency t;rqns can be expressed as:
ttrans = max(ttlmns, ttzmns). ttlmns represents the latency that sat-
isfies the equation E; 5 = Ecom + Etrans, can be expressed as:

_ Esup - Ecom - Etrans (1 1)

Psys

1
ttrans
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To satisfy the second condition, we consider scenarios where the
satellite must complete all necessary data transmissions over mul-
tiple orbital periods based on real conditions. Consequently, the
latency of transmitting data from the satellite to the ground can be
divided into two parts: the latency of satellite data transmission t;,
and the latency of waiting for data transmission when the ground
station is out of contact with the satellite during the operational
cycle tper. Therefore, the latency for transmitting the intermediate
data D from the satellite to the ground can be expressed as follows:

2 —
Lirans = ttr + Iper

12
D -1 (12)

D
= ——+teyc- ([
v Rtrans *teon

Rtruns
where tcyc represents the satellite orbital period, and tcon denotes
the transmission window time between the satellite and the ground.

5 PROBLEM SOLUTION

We first proposed an exact solution for the problem by formulating
an integer nonlinear program(INLP). Subsequently, we designed
a global optimal algorithm to solve the problem and obtain the
optimal strategy.

5.1 Problem Formulation

Our goal is to minimize energy consumption on satellites for each
inference task, including both computational and communication
energy. In the satellite-ground co-inference model we have estab-
lished, it is necessary to determine the values of hy,. Therefore, the
optimization problem can be formulated as an integer nonlinear
program as follows.

minE = Ecom + Etrans =

1 1 [

0; Zj:i+1 (Cﬂivj “ (hy, — hﬂj) 'Etrans) (13)
Z ho; - Ecom + T
i=1 Zj:i+1(cvivj . (hvi - h’Uj))
s.t.
bat
Equp <V Epar (14)
tggrtrf”ite + ttrans + tg;fr:md <T (15)
Rerans < Riyans (16)
b1

o € [0, 5] (17)
hy € {0,1} (18)

where Eq. (14) constrains the depth of discharge of the battery set.
Eq. (15) denotes that the overall duration of satellite-ground co-
inference must be completed within a specified time delay, where T
represents the maximum allowable task latency. Eq. (16) limits the
satellite downlink transmission rate to be less than the theoretical
maximum transmission rate. Eq. (17) specifies the range of variation
for the solar incidence angle. Eq. (18) restricts the binary variables.

5.2 Satellite-Ground Co-Inference Algorithm

The conventional optimization algorithms cannot solve the mini-
mize energy consumption on satellites with multiple constraints.
Because commonly used methods for nonlinear programming prob-
lems such as interior point methods and gradient descent can only
yield local optimal solutions. Therefore, to obtain the globally op-
timal solution for the offloading strategy, we need to choose a
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Algorithm 2: Satellite-Ground Co-Inference

Input: The DAG of a DNN model. The initial data volume
Dy and the collection of ratios of the output matrices
of layers to the initial input matrix {a,}. The
constraints C. Energy Consumption Prediction Net
based on PSO-BPR: net. The constants: {0}, Rirans,
Py, and so on.

Output: An offloading decision {h,} for the inference

request.

Generate M random individuals as the initial population

P(0);
Define Probability of Crossover p., and Mutation
Occurrence pm,;

[

N}

[}

Define population size M;

Define the number of iterations t = 0;
5 EZym < net({ay}, Do, DAG);

6 while not (termination criterion) do

7 foreach individual i in M do

'S

8 ‘ Evaluate the fitness E(i) of P(t);
9 end
10 P(t+1) =0

1 while |P(t + 1)| < |P(¢)| do
Select two individuals ind,, indj, in P(t) with the
fitness;
if random(0,1) < p. then
ind. « perform crossover operations on indg,

12

13
14
indy;
end
if random(0,1) < py, then
‘ indy < apply mutation operations on ind,;

15

16

17

18 end

if indy; satisfy the constraints C then
‘ P(t+1) « indy;

end

19
20

21

22 end

23 t—t+1;

24 end

heuristic intelligent algorithm for solving it. We propose the Ge-
netic Algorithm (GA) for the problem. GA is a heuristic optimization
technique that solves optimization problems by simulating natural
selection and genetic mechanisms in biological evolution. More-
over, GA is the most suitable heuristic algorithm for optimizing
problems in discrete spaces and exhibits robustness in searching
multi-modal spaces.

The detailed algorithm is provided in Algorithm 2. The satellite-
ground co-inference algorithm is solved using Integer Nonlinear
Programming based on the Genetic Algorithm (INLPGA). First, ini-
tialization is performed (lines 1-4). Next, the predictive network
calculates the energy consumption for each DNN layer (line 5). The
population then undergoes continuous iterations until the termi-
nation condition is met. In each iteration, the energy consumption
E(i) of each individual in the parent population is calculated (lines
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Table 2: Simulation parameters.

Parameters Value
Orbital height H 450 km
Orbital period of the satellite tcyc 5,601 seconds
Window time tcopn 6 minutes
Direct solar power Py 40W
Satellite system power consumption Psys 10W
Max battery energy capacity E' 7" 8.28 X 10°]
Max discharge depth 40%
Max transmission rate R70X [20, 100] MB/s
Latency of processing 1MB on ground f | [107°,1073] seconds
Probability of Crossover p. 0.8
Mutation Occurrence p;, 0.01

7-9). The offspring population P( + 1) is initialized, and individuals
are selected using a proportional selection algorithm until P(t + 1)
matches P(t) (lines 10-12). Single-point crossover is performed on
two individuals, producing individual ind. (lines 13-15). Gaussian
mutation is then applied to ind,, resulting in individual ind; (lines
16-18). If ind; satisfies all constraints, it is added to P(t + 1) (lines
19-21). Finally, the value of ¢ is incremented for the next generation
(line 23).

6 EVALUATION

In this section, the proposed satellite-ground co-inference algorithm
(INLPGA) is analyzed via experiment. We evaluate the performance
of our proposed algorithm by comparing it with the following three
algorithms:

e Greedy algorithm (GREEDY): This approach employs the
greedy principle to choose the best option based on current
state, aiming to aggregate the final outcomes [25].

o All tasks are completed on the satellite (ARS): The satel-
lite autonomously executes the entire DNN task on the on-
board payload, then transmits the results to the ground sta-
tions [7].

o All tasks are completed on the ground (ARG): The satel-
lite transmits all initial data to ground stations [10]. We des-
ignate the ARG time as the maximum task delay constraint
T to ensure real-time performance.

6.1 Experiment Setup

In the experiment, we utilized the parameters of satellites in a real-
world “BUPT-1" LEO satellite. Using STK simulation software>,
we calculated the solar incidence angle 6 for each second. Con-
sequently, we computed the power obtained by the solar panel
Pgun - cos 0, as mentioned in Section IV. The main simulation pa-
rameters were set according to [31, 40]. We list the main simulation
parameters in Table 2.

6.2 The Impact of Different Models

To evaluate the impact of various models, we selected three widely
used DNN models: AlexNet, VGG, and GoogLeNet. These models,

3https://www.ansys.com/products/missions/ansys-stk
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Figure 11: The impact of different downlink transmission
rates.

differing in structure and complexity, help ensure convincing re-
sults. AlexNet, the simplest with the fewest layers and parameters,
contrasts with the more complex structures of VGG and GoogLeNet.
From Figure 10, it can be observed that the more complex the DNN
structure, the more energy consumption and latency for task com-
pletion. We set the number of images varies from 1 x 10* to 5 X 10°
with the transmission rate of 100MB/s. For AlexNet, using the al-
gprithm proposed in this paper, the energy consumption ranges
from 977 J to 48,880 J. For VGG, the energy consumption ranges
from 5,616 J to 280,817 J. For GoogLeNet, the energy consumption
ranges from 7,327 J to 122,157 Js. In terms of energy consumption,
both VGG and GoogLeNet show an increase of one order of magni-
tude compared to AlexNet overall. In terms of latency, VGG, and
GoogLeNet show an increase of two orders of magnitude and one
order of magnitude respectively compared to AlexNet. Moreover,
We observed that the energy consumption of our proposed algo-
rithm INLPGA consistently remains the lowest among the three
algorithms. It validates the remarkable effectiveness and robustness
of our proposed algorithm.

6.3 The Impact of Data Volume

To investigate the impact of data volume, Figure 10 illustrates the
performance of energy consumption and latency across the three
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models with the number of images varying from 1 x 10* to 5 x
10°. Both metrics exhibit an increasing trend with the increase in
data volume. When computing data for 5 x 10° images, Figure 10b
shows that with the VGG model, the ARS algorithm consumes 8.6x
more energy and experiences a latency 4.9 longer compared to
the INLPGA. Figure 10c shows that with the GoogLeNet model,
the ARS algorithm consumes 65X more energy and experiences a
latency 66 longer compared to the INLPGA. We conclude that the
proposed algorithm is more suitable for scenarios involving large
volumes of computational data.

6.4 The Impact of Transmission Rate

Figure 11 further illustrates the impact of transmission rates on en-
ergy consumption and latency. We conducted tests on the AlexNet
model with data volumes of 3 x 10° images while varying the satel-
lite’s downlink rates.

Figure 11a illustrates the impact of satellite downlink transmis-
sion rates on energy consumption. We observed that increasing the
rate from 20MB/s to 100MB/s results in only a slight decrease in
energy consumption, by 38%. Moreover, under different transmis-
sion rates, the energy consumption of our algorithm consistently
remains lower than other algorithms. This finding indicates that,
even under poor satellite-ground communication conditions, us-
ing the proposed algorithm can still save energy consumption on
the satellite. Figure 11b illustrates the impact of satellite downlink
transmission rates on latency. We concluded that increasing the
rate from 20MB/s to 100MB/s results in a significant decrease in
latency, by 8.9%. Additionally, from Figure 11b, we observed that
under different transmission rates, the energy consumption of our
algorithm consistently remains much lower than that of the ARG
algorithm, demonstrating the superiority of decreasing latency.

7 CONCLUSION

This paper addresses the challenges of limited energy acquisition
on LEO satellites by providing DNN-inherent service via satellite-
ground co-inference. We first conduct preliminary measurements
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to explore the correlation between energy consumption and layer
types, establishing a layer-based energy consumption prediction
model. Next, we formulate and solve a DNN layer-wise processing
schedule optimization problem using a genetic algorithm. Using
configurations from the real-world in-orbit satellite "BUPT-1," our
simulations demonstrate the effectiveness of our algorithm, achiev-
ing an average energy savings of 27X. For future work, we plan to
deploy our method on real satellites for further experimentation.
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